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Abstract Biofuel has been obtained by cracking of soy-

bean (Glycine sp.) oil, which is characterized by acidity

index, density, cetane index, copper corrosion, carbon

residue, fulgor point, and heat of combustion. In order to

evaluate the quality of biofuel as well as detect its adul-

teration with vegetable oil, partial least squares regression

calibration models based on thermogravimetric (TG)

analysis were used as a precise and an accurate method.

Thirty mixtures of biofuel/diesel/vegetable oil standards

were prepared. Twenty of them were used for calibration,

and ten for validation. The results have shown that the

thermogravimetric analysis, PLS/TG, presented the best

performance for the detection of vegetable oil contamina-

tion with a root mean square error of prediction (RMSEC%

w/w) of 0.23, with a relative error of prediction of 3.6%,

corroborating with the success of TG analysis application

to determine the quality of biofuels and diesel/biofuel

blends, showing that the TG analysis is an excellent tool to

control quality of biofuels.

Keywords Diesel-like � Quality control �
Thermal analysis � PLS

Introduction

The conventional fossil fuels are essential to maintain the

mankind development and lifestyle [1, 2]. Thus, burgeon-

ing demand of fuels has been increasing day-by-day. On

the other hand, the burning of fossil fuels generates high

amounts of greenhouse gases, mainly CO2, producing toxic

acid rain gases (NOx, SOx). Therefore, the use of envi-

ronmentally friendly alternative fuels is necessary to

reduce the CO2 and SOx emissions and maintain the quality

of life on Earth [3–5].

Hence, the application of renewable natural sources in

the biofuels production has significantly grown over the

past decade. Technologies to produce these environmen-

tally friendly fuels based on the conversion of vegetable

oils have been highlighted in the last years [5]. One of the

methods to obtain green fuels is the production of diesel-

like by the pyrolysis of vegetable oils. The pyrolysis

methodology to obtain hydrocarbons has been applied

since Second World War in China by thermo-cracking of

Tung oil [6]. A myriad of studies about thermo-cracking

and catalytic cracking have been developed since Second

World War [7–11].

On the other hand, the most popular route to produce

green fuel is alcoholysis of triacylglycerides, well known

as transesterification [4]. However, alcoholysis needs spe-

cial conditions to obtain biofuel because this reaction

requires a large amount of alcohol, acid or basic catalysts,

dry reactants, and dry conditions [12]. In other words, at

least 3 mol of alcohol is necessary to convert each mol of

triacylglyceride into biofuel. The presence of water in this

reaction can cause the hydrolysis of distinct esters, and the

application of base catalysts results in the formation of

soap [12]. Thus, the pyrolysis of vegetable oil is an elegant

alternative to produce biofuels. This pyrolyzed or cracked
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biofuel presents physical and chemical properties very

similar to traditional fossil diesel, and this biofuel pro-

duction does not show the typical setback of transesterifi-

cation methodology for producing biofuel.

Nowadays, concerns about global warming and the

amount of petroleum sources have generated some gov-

ernmental actions. One example is the encouragement of

the US government to use biofuels offering tax incentives

[4]. European Commission adopted Directive 2003/30/EC,

and this program indicates the addition of 2% of biodiesel

or diesel-like in fossil diesel in 2005 and 5.75% up to 2010

[2].

The Brazilian government has also created a biofuel

program, which aims the addition of 2% of biofuel in fossil

diesel in 2008 and 5% up to 2013. These programs have

been stimulating the biofuels production [13]. Moreover,

the Brazilian biofuel program stimulates the biofuel pro-

duction from vegetable oils by small farms, which could

mean an additional profit to simple agricultural bread-

winners, improving the Brazilian agricultural workers’

lives [13].

One of the preoccupations of these programs is the

biofuel purity obtained from vegetable oils. The presence

of oils in biofuel is a remarkable problem and should be

controlled. Consequently, the development of assays

capable of determining the biofuel purity has become

necessary. The presence of soybean oil as a contaminant of

biofuel is because the majority of the biofuel produced in

Brazil comes from soybean oil. This contamination can

occur due to a non-effective transformation of vegetable oil

into biofuel or even a criminal adulteration of the biofuel.

Chemometric methods provide an effective way to

extract quantitative information from many kinds of data,

such as UV–VIS [14, 15], IR [16], NMR [17], and fluo-

rescence spectroscopy [18]. Multiple linear regression

(MLR), principal components regression (PCR), and partial

least squares regression (PLSR) are the most applied

multivariate calibration methods relating instrumental

responses and the property of interest [19]. Several of these

applications have demonstrated that multivariate calibra-

tion is able to determine properties of interest in relatively

complex systems where no selective signals and significant

interferences are observed [14–18]. The application of

chemometric methods for analyzing thermal data is less

common than in spectroscopy. Examples of works in this

research field can be found by applying exploratory and

pattern recognition methods such as principal component

analysis (PCA) to study the effects of chemicals on cellu-

lose pyrolysis by thermogravimetry–mass spectrometry

(TG–MS) [20], the analysis of cellulosic and regenerated

fabrics by PCA and Soft Independent Modeling of Class

Analogy (SIMCA) [21] and the classification of polyeth-

ylenes groups by linear discriminant analysis (LDA) [22].

For quantitative purposes, PLSR has been applied for TG

analysis [23–25] and differential TG data [26]. Despite the

above cited references, there is a lack of applications of

chemometric methods with thermal techniques with several

research areas or kinds of samples. Therefore, the research

and development of new applications are still necessary to

join chemometric and thermal methods to verify the ben-

efits that can be achieved in a wide range of situations. In

this way, the proposal of this study is the development of

an analytical method for the determination of the presence

of vegetable oil in diesel-like through thermogravimetric

analysis using chemometric methods.

Theory

Multivariate calibration—PLSR

The PLSR model has been discussed in detail in the liter-

ature [17, 19]. Thus, only a brief description of the main

information for the model development is presented. The

data matrix X is formed by the thermograms of the bio-

diesel/oil mixtures and the vector y contains the reference

values for percentage (w/w) of oil in the sample. In this

application, all models were built with the instrumental

responses and reference values mean centered. The number

of latent variables (LVs) used in the PLSR models was

chosen based on the RMSECV values obtained for a trial

number of LVs, where the lowest value indicates the cor-

rect choice for the number of LVs [27].

Interval partial least square regression (iPLSR) is an

interactive extension of PLSR that develops local PLSR

models based on equidistant subintervals of the full-ther-

mogram region. Its main use is to provide an overall pic-

ture of the relevant information in different subdivisions.

Thereby, it focuses on important regions, removes inter-

ferences from other ones, and selects the regions that

provide the lowest prediction errors. Therefore, IPLSR was

applied in this study to select the thermogram region that

presented the lowest prediction errors for the model

development. The choice of the best iPLSR model was

done by comparing the prediction performance of these

local models with the global model built with the full

thermogram. The comparison is mainly based on the root

mean squared error of cross validation (RMSECV) [17,

28].

Analytical figures of merit

Mean prediction error

Reports, in other words, the closeness of agreement between

the reference percentages of oil and the value found by the
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calibration model. In chemometrics, this is generally

expressed as the root mean square error of prediction

(RMSEP), which is an approximation of the standard error of

the validation samples, obtained as [29]:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Ival

i¼1

yi � ŷið Þ2

Ival

v

u

u

u

t

ð1Þ

where Ival is the number of validation samples. When the

calibration samples are used instead of the validation set,

the RMSECV is analogously obtained by replacing Ival by

Ical, where Ical is the number of calibration samples.

According to the definition of the RMSEP, a relative

error of prediction (REP) can be obtained as [30]:

REP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Confidence intervals

This parameter can be defined as a range within which we

may assume, with a given degree of confidence, i.e., a

certain probability, that the real value for that concentration

of the analyte of interest is included. It can be determined

from the application of statistics and the estimated standard

error of prediction (sðŷ� yÞ), expressed as [17, 29, 31]:

CIðyiÞ ¼ ŷi � tm;1�a=2 � sðŷ� yÞ ð3Þ

CIðyiÞ ¼ ŷi � tm;1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSECð1þ hi þ 1=Ical

p

Þ ð4Þ

where a is the significance level required for the prediction

interval, tm,1-a/2 is the corresponding critical level for

Student’s t distribution with m degrees of freedom,

determined as proposed by Van der Voet [32], Ical is the

number of calibration samples, MSEC is mean square error

estimated in the calibration samples with m degrees of

freedom and hi is the leverage of the sample, estimated as

[27]:

hi ¼ tT
i TTT
� ��1

ti ð5Þ

where ti and T are the scores for the sample i and for all the

calibration samples, respectively.

Capability of detection (CCb)

According to ISO 11843-2 [33] definitions, the CCb can be

defined as the minimum detectable net quantity with a pre-

set of probabilities of false-negative (a) and false-positive

(b) errors (usually a = b = 0.05). Ortiz et al. [34] have

extended the CCb application for multivariate calibration

methods such as PLSR. Following this approach, the CCb
can be determined as [34]:

CCb ¼ da;b
s

b
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where s is the standard deviation of the residuals of the

regression of the estimated concentrations (ŷ) against

the reference concentration of calibration samples (y) with

the intercept ‘‘a’’ and slope ‘‘b’’, m is the number of

replicate measurements performed on each sample, �y is the

mean concentration of the standards, and da,b,m is the

noncentrality parameter from the noncentral t-distribution

with Ical-2 degrees of freedom.

Experimental

Chemicals

Vegetable oil (Soya) and diesel (ANP) were used without

any purification.

Diesel-like production

Diesel-like was obtained by pyrolysis of soybean oil. Pyro-

lysis experiments were carried out at temperatures ranging

from 350 to 400 �C with a 5 L stainless steel batch unit, as

described in detail before [13, 35]. The vegetable oil (2 L)

was introduced into the pyrolysis reactor and then heated by

an external electric resistance. The temperature was mea-

sured at two sites with calibrated thermocouples. When the

temperature inside the reactor achieved 350 �C, the vege-

table oil was pyrolyzed, vaporized, and a vapor feed left the

reaction, by the upper side at temperatures ranging from 200

to 250 �C. Then, the vaporous feed enters into a water cooled

heat exchanger. Two liquid fractions were obtained in the

collector: an aqueous fraction and an organic one. These

fractions were separated by decantation, and the organic

phase was distilled by standard oil laboratory techniques

[36]. The diesel-like distillates were separated into four

fractions with distillation temperature ranges: (a) T \80 �C;

(b) 80 �C B T \ 140 �C; (c) 140 �C B T \ 200 �C;

(d) 200 �C B T (heavy fraction). The different fractions

were weighed and the heaviest one was analyzed according

to ASTM standard methods for petroleum fuels.

Diesel-like characterization

Acidity index was determined using 1.0 g of diesel-like

solubilized in 10.0 g of 1:1 toluene:isopropanol solution

with three drops of ethanolic solution of phenolphthalein

1.0%, as according to AOCS Cd3d63 standard method.
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The density of diesel-like was determined in triplicate

using an electronic densimeter Anton Paar Model DMA

35N at two distinct temperatures. Samples were maintained

at 15 and 20 �C in a thermostatic bath. Density measures

were carried out after temperature equilibrium, as stated by

ASTM D4052 standard method.

Viscosity was carried out in a Herzog viscosimeter

model HVB-438 in triplicate, as according to ASTM D 445

standard method.

Cetane index was obtained using 100 mL of diesel-

like were distilled in an automatic distillator Herzog

model HDA 627, as according to ASTM D86 standard

method.

Cooper corrosion was determined using 30 mL of die-

sel-like and copper blade were added in the test tube. The

tube was equilibrated at 50.0 ± 1.0 �C for 3 h ± 5 min.

Copper blade was separated, and the corrosion degree was

determined by the comparison with reference blade as

stated by ASTM D130 standard method.

Carbon residue was obtained using 10.0 g of diesel-like

were added in a porcelain crucible. The crucible was

heated up to smoke formation. Then, the smoke was ignited

by a Bunsen flame, as stated by ASTM D189.

Fulgor point of diesel-like was determined by Pensky-

Martens apparatus, as according to ASTM D93 standard

method.

Thermogravimetry of diesel-like and adulterated

diesel-like

Thermal analysis of diesel- and adulterated diesel-like

samples were carried out in a thermogravimetric analyzer

TA model SDT 2960 with an air flux at 100 mL min-1 and

a heating rate of 10 �C min-1. In these experiments, 20

samples were used to prepare the calibration method and 9

to obtain the validation. All analyses were carried out in the

same week.

Results and discussion

Characterization

The soybean oil is basically composed of triglycerides,

which are formed by ±30% of oleic acid framework and

±60% of linoleic acid framework (Fig. 1).

The composition of the pyrolysis mixture from soybean

oil is based on various organic and inorganic products such

as: C11–C24 alkyls, C7–C11 carboxylates, acrolein, CO2,

CO, and water (Fig. 2) [37]. The data of characterization

(density, viscosity, acidity index, automatic, fulgor point,

cetane index, copper corrosion, and carbon residue) of the

biofuel obtained from the pyrolysis of soybean oil are

shown in Table 1.

Thermogravimetric analysis

TG curves of the diesel and biofuel obtained from the

pyrolysis of soybean oil and diesel/biofuel (50:50, w:w)

blend are presented in Fig. 3, which showed only one step

of mass loss, which was attributed to the volatilization and/

O
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Fig. 1 Common structure of

triglyceride of soybean oil
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Fig. 2 Proposed structures of biofuels obtained from pyrolysis of

soybean oil. Biofuel mixtures present a slightly varied composition

depending on feedstock and processing conditions

Table 1 Results for the characterization of the diesel-like and stan-

dard values of diesel required by ANP (Brazilian Oil Agency)

Parameter Diesel-like Diesel

Density 20 �C/Kg/m-3 872.5 820–880

Viscosity 40 �C/mm2s-1 4.93 2.0–5.0

Acidity index/mg KOH g-1 de óleo 90.15 –

Automatic distillation/�C

10% 147.2 To observe

50% 293.1 245–310

85% 318.8 370 (max)

90% 345.2 370 (max)

Fulgor point/�C 64 38 (min)

Cetane index 36.7 51–54

Copper corrosion 1 1

Carbon residue/% 0.51 0.25
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or combustion of methyl esters from biodiesel and alkyl

compounds from diesel.

The TG curves of the biofuel obtained from the pyro-

lysis of soybean oil, biofuel spiked with soybean oil, and

soybean oil were recorded in air (Fig. 3). These curves

presented four mass loss steps. The first one (from 25 to

300 �C) was assigned to the volatilization of hydrocarbons.

The second step (between 300–350, 350–380, and

300–390 �C for biofuel, biofuel spiked with soybean, and

soybean oil, respectively) was attributed to the oxidation of

the unsaturated fatty. The third step started at 350, 380, and

390 �C for soybean oil, biofuel spiked with soybean, and

biofuel, respectively, and finished at 480 �C for all sam-

ples. This mass loss is related to the oxidation of the sat-

urated fatty. The last event (between 480–600 �C) is

assigned to the decomposition of the polymers formed

during the thermal oxidation process [38–40]. TG curves

clearly showed that the volatilization is much more evident

in biofuel than in soybean oil, and the oxidation steps were

more evident for soybean oil than biofuel. This fact can be

explained by the presence of hydrocarbons and the low

weight organic compounds in biofuel, which showed a

volatilization temperature lower than the compounds

present in vegetable oil. Moreover, vegetable oil is rich in

triglycerides, which presents high intermolecular interac-

tions. These interactions make the volatilization difficult,

and consequently, cause the degradation by the oxidation

of fatty in high temperatures.

PLSR modeling and validation of the TG data

In order to obtain the PLS calibration model, TG curves

were obtained for all blends. All calculations were carried

out using the Matlab version 6.5 (MathWorks) and the

IPLSR routines available on the web [40].

The optimal number of LVs needed in the calibration

model was obtained by cross-validation (CV) choosing the

one that provided the lowest RMSECV. The performance

of the calibration models was analyzed by calculating the

root mean squares errors of CV, RMSECV, and of external

validation (Fig. 4).

Figure 4 showed that the best temperature range for

model development was between 283 and 309 �C, pre-

senting a RMSECV lower than 0.33% and with 4 LVs.

All TG curves from 25 to 309 �C were shown in Fig. 5.

This figure clearly shows the difference among the curves

with distinct amounts of soybean oil present in biofuel. It is

important to observe that only the best temperature range

obtained with IPLSR (between 283 and 309 �C) was used

for calibration. The calibration data set was initially com-

posed by 20 samples. However, the samples presenting 4

and 8% soybean oil were excluded from the calibration

samples due to the presence of a large error in the
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prediction values when compared with the reference val-

ues. The comparison between the reference and predicted

values with their confidence intervals is presented in Fig. 6,

where a good agreement and low uncertainty can be

observed.

Results for the figures of merit are displayed in Table 2.

It can be observed that the mean prediction errors repre-

sented by RMSEC (root mean square error of calibration),

RMSECV and RMSEP were all lower than 0.50%, whereas

the relative error was 3.6%. The mean uncertainty obtained

with 95% of confidence (presented graphically in Fig. 6)

was 0.88%. These results indicate the good prediction

ability of the model.

The goodness of fit presents the slope and intercepts

values for the regression line between the reference and

predicted values. Since the confidence intervals for these

parameters include the unit (1.0) and zero (0.0), it can be

concluded that the IPLSR model does not present any

constant or proportional systematic errors, confirming the

accuracy of the multivariate model.

The CCb estimated as proposed by Ortiz et al. [34]

includes not only the variation of the noise in the data, but

also the error of the regression model. Therefore, it rep-

resents a realistic value for this important figure of merit.

The estimated value for CCb was 1.1%, which indicates

that the TG method is appropriate to determine the adul-

terations of biofuel in routine analysis.

Conclusions

The addition of soybean oil increases the heat of com-

bustion of biofuel, which is caused by the presence of

organic chains which are bigger than the biofuel ones. TG

curves showed that the biofuel presented a volatilization in

a temperature lower than soybean oil. The biofuel showed

a high mass loss in the volatilization step and a low mass

loss in oxidation steps, whereas the soybean oil showed the

opposite behavior.

PLSR calibration model developed with the TG data

showed a high correlation between the real and predicted

concentrations. The method is simple and does not require

any additional pretreatments of the fuel samples. The

results for accuracy, uncertainty, and CCb were promising,

indicating that the developed model by thermogravimetric

analysis is one alternative to be used in the quality control

of biofuels.
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Fig. 5 Thermogravimetric curves of diesel- and diesel-like adulter-

ated with soybean oil from 27 to 310 �C
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Fig. 6 PLS regression and external validation for the soybean oil

content in biofuel in the temperature range between 283 and 309 �C,

(unfilled circle) Calibration set, (filled triangle) validation set, and

(error bars) uncertainty of the estimated values with 96% of

confidence

Table 2 Figures of merit for the PLS model with the interval of

282–309 �C

Parameter

RMSECa 0.23

RMSECVa 0.33

RMSEPa 0.47

Relative error of predictionb 3.6

Capability of detection

(CCb)a
1.11

Goodness of fit

Intercept 0.991 ± 0.024

Slope 0.140 ± 0.267

a Expressed as percentage (w/w), bPercentage
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ME, Giménez D, Meléndez ME. Capability of detection of an

analytical method evaluating false positive and false negative

(ISO 11843) with partial least squares. Chem Int Lab Syst.

2003;69:21–6.

35. Oliveira JS, Montalvão RS, Daher LO, Suarez PAZ, Rubim JC.

Determination of methyl ester contents in biodiesel blends by

FTIR-ATR and FTNIR spectroscopies. Talanta. 2006;69:1278–82.

36. Lima DG, Soares VCD, Ribeiro EB, Carvalho DA, Cardoso

ECV, Rassi FC, Mundim KC, Rubim JC, Suarez PAZ. Diesel-like

fuel obtained by pyrolysis of vegetable oils. J Anal Appl Pyro-

lysis. 2004;71:987–91.

37. Andrade RDA, Faria EA, Silva AM, Araujo WC, Jaime, Costa

KP, Prado AGS. Heat of combustion of biofuels mixed with fossil

diesel oil. J Therm Anal Calorim. 2011, in press.

Thermal diesel-like analysis 871

123



38. Ramalho VC, Jorge N. Antioxidants used in oils, fats and fatty

foods. Quim Nova. 2006;29:755–60.

39. Garcia CC, Franco PIBM, Zuppa TO, Antoniosi Filho NR, Leles

MIG. Thermal stability studies of some cerrado plant oils.

J Therm Anal Calorim. 2007;87:645–8.

40. Rudnik E, Szczucinska A, Gwardiak H, Szulc A, Winiarska A.

Comparative studies of oxidative stability of linseed oil. Ther-

mochim Acta. 2001;370:135–9.

872 A. G. S. Prado et al.

123


	Thermal diesel-like analysis
	Quality control by thermal and chemometric analysis
	Abstract
	Introduction
	Theory
	Multivariate calibration---PLSR
	Analytical figures of merit
	Mean prediction error
	Confidence intervals
	Capability of detection (CC beta )


	Experimental
	Chemicals
	Diesel-like production
	Diesel-like characterization
	Thermogravimetry of diesel-like and adulterated diesel-like

	Results and discussion
	Characterization
	Thermogravimetric analysis
	PLSR modeling and validation of the TG data

	Conclusions
	Acknowledgements
	References


